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The quadratic contact process is formulated as an adsorption-desorption model on a two-dimensional square
lattice. It involves random adsorption at empty sites and correlated desorption requiring diagonally adjacent
pairs of empty neighbors. We assess the model behavior utilizing kinetic Monte Carlo simulations. One finds
generic two-phase coexistence between a low-coverage active steady state and a completely covered or “poi-
soned” absorbing steady state; i.e., both states are stable over a finite range of adsorption rates or “pressures.”
This behavior is in marked contrast to that for equilibrium phase separation. For spatially homogeneous
systems, we provide a comprehensive characterization of the kinetics of relaxation to the steady states. We
analyze rapid poisoning for higher pressures above an effective spinodal point terminating a metastable active
state, nucleation-mediated poisoning in the metastable region, the dynamics of poisoned droplets within the
two-phase coexistence region, and behavior reminiscent of bootstrap percolation dynamics for lower pressures.
For spatially inhomogeneous systems, we analyze the propagation of planar interfaces between active and
absorbing states, fully characterizing an orientation dependence which underlies the generic two-phase
coexistence.
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I. INTRODUCTION

Stochastic spatial models for far-from-equilibrium pro-
cesses incorporating irreversible steps �1� can display a
richer variety of spatiotemporal behavior than traditional
Hamiltonian systems where microscopic transition rates are
constrained to satisfy detailed balance. One example of a
feature specific to nonequilibrium systems is the occurrence
of absorbing states, using the parlance of Markov processes,
from which the system can never escape �1–4�. Nonetheless,
more generally, the steady states of such nonequilibrium
models often exhibit continuous �second-order� and discon-
tinuous �first-order� phase transitions which appear analo-
gous to equilibrium phase transitions in Hamiltonian systems
�1–4�. Most effort towards exploring this analogy has fo-
cused on continuous nonequilibrium transitions where the
concept of universality carries over from equilibrium transi-
tions. In fact, a robust universality class for continuous tran-
sitions to nondegenerate absorbing states has been identified
as that of directed percolation or Reggeon field theory �2–4�.

For nonequilibrium processes, less attention has been paid
to discontinuous transitions where universality does not ap-
ply �5–11�. However, one such well-known example is pro-
vided by the two-component Ziff-Gulari-Barshad �ZGB�
model for a monomer-dimer surface reaction �5�. This ZGB
model includes the following steps: random adsorption of
monomers at single empty sites of a two-dimensional lattice
�d=2�, dissociative adsorption of dimers at empty pairs of
sites, and irreversible reaction of adjacent monomer and
dimer species. In this model, a discontinuous transition from
an active �i.e., reactive� state to a monomer-poisoned absorb-
ing state occurs for sufficiently high monomer adsorption
rate or “partial pressure” �5�. Various phenomena related to
this nonequilibrium transition have been analyzed in some
detail: the steady-state coverage versus partial pressure in-

cluding the pressure at the discontinuous poisoning transition
�5�, propagation and fluctuation behavior of interfaces be-
tween active and poisoned states �5,7,8�, epidemic properties
related to an active droplet embedded in the monomer-
poisoned absorbing state �6,9�, and nucleation of droplets of
the absorbing state within the metastable active state and
associated metastability phenomena �7,11�. Some features of
the observed behavior are unusual for a discontinuous tran-
sitions �10� �e.g., apparent algebraic scaling of epidemic
properties �6�� and likely reflect the presence of a weak line
tension at the interface between active and absorbing states.
We explore this latter issue elsewhere �12�.

To facilitate a fundamental understanding of discontinu-
ous nonequilibrium phase transitions, it is more convenient
and natural to search for and analyze single-component mod-
els with the desired behavior �as an alternative to further
analysis of the more complex two-component ZGB model�.
Such simpler single-component models which purportedly
exhibit discontinuous transitions in low dimensions have also
been developed and analyzed previously. The so-called
Bidaux-Boccara-Chaté model �13� is a probabilistic cellular
automaton which exhibits a discontinuous transition in d
�2 dimensions, but not for d=1 �2�. The so-called triplet-
creation model �14� was developed to provide an example of
a model with a discontinuous transition for d=1 at least for
sufficiently rapid particle hopping. The issue of the existence
of this discontinuous transition in this model has also been
addressed in more recent studies �15�. Schloegl’s second
model for autocatalysis, described in more detail below, pro-
vides another example of a single-component model de-
signed with the potential to exhibit a discontinuous transi-
tion.

There has been considerable interest in the class of
Schloegl-type models associated with autocatalytic kinetics
�16�, where mean-field versions provide classic examples of
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bifurcation behavior and synergetics �17�. Special cases of
this kinetics are as follows: X↔2X and X→� for Schloegl’s
first model and 2X↔3X and X→� for Schloegl’s second
model, where X denotes a particle �so, e.g., X→� represents
particle annihilation�. The mean-field kinetics is quadratic for
the first model, suggesting a continuous transition to the
vacuum state, and cubic for the second model, suggesting a
discontinuous transition. It is indeed the case that various
discrete realizations of the first model exhibit a continuous
transition in the universality class of directed percolation.
However, contrasting early reports, one careful study of a
synchronous cellular-automaton type realization of the sec-
ond model �18� reported a continuous transition for spatial
dimension d=1–3. A discontinuous transition emerged only
for d�4. Another study of a lattice-gas model realization
confirmed the existence of a continuous transition for d=1
�2�. Both studies actually included particle hopping which
should if anything enhance a discontinuous transition given
that bistability is exhibited by the mean-field version of the
model. However, within the context of the current study, it
should be recognized that model behavior will depend on the
specific discrete realization.

In this work, we adopt a realization of Schloegl-type mod-
els on a square lattice �d=2� which is in the spirit of
adsorption-desorption models. These models are also re-
ferred to as a “contact processes.” Roughly speaking, the
following adsorption-desorption prescription interchanges
the role of particles and vacancies from that in the above
description of Schloegl models. In the standard contact pro-
cess �SCP� which mimics Schloegl’s first model, particles
adsorb randomly on the empty sites at fixed rate or “pres-
sure” and desorb at a rate proportional to the number of
empty nearest-neighbor �NN� sites �2–4�. Not surprisingly,
this process exhibits a continuous poisoning transition to a
completely covered surface �an absorbing state� which is in
the directed percolation universality class. In the quadratic
contact process �QCP� which mimics Schloegl’s second
model, again particles adsorb randomly on the empty sites at
fixed rate or “pressure” and desorb at a rate proportional to
the number of diagonally adjacent pairs of empty NN sites
�1,19�. We have recently shown that this QCP exhibits a
discontinuous poisoning transition between an active state
with a low-coverage and a completely covered surface �again
an absorbing state� �19�. These models are related to more
general threshold contact processes with random adsorption
where desorption is allowed �at a single rate� only if M or
more adjacent sites are empty �20�. Then, the case M =1 is
similar to the SCP, M =2 to the QCP �as discussed further
below�, and models with M �3 have no active state for any
p�0 on a square lattice. For M =3, particles within com-
pletely filled rectangular regions cannot desorb, so these re-
gions spread irreversibly. For M =4, no particles in clusters
of any shape cannot desorb, so all clusters spread irrevers-
ibly.

The traditional picture for discontinuous transitions to ab-
sorbing states is that the active and absorbing states coexist
at a unique equistability pressure. Remarkably, for the QCP,
coexistence of stable active and absorbing states occurs for a
finite range of pressure. This means that for any pressure in
this range, droplets of the absorbing state embedded in the

active cannot grow indefinitely but rather die out, even
though the absorbing state is stable. Likewise, droplets of the
active state embedded in the absorbing state cannot grow
indefinitely and instead die out. This feature leads to so-
called generic two-phase coexistence �PC� or true bistability
�21�, which dramatically contrasts the behavior for discon-
tinuous equilibrium transitions. For the QCP, PC can be un-
derstood in terms of an orientation dependence of the propa-
gation of planar interfaces between active and absorbing
states �19�, as described in more detail in the following sec-
tions.

We should note that the prototype for such PC phenom-
enon is provided by Toom’s synchronous north-east-center
�NEC� stochastic cellular-automaton model �22–25�. In this
model, individuals located on a square lattice change their
votes for one of two parties guided by the majority of their
current vote and those of their neighbors to their north and
east. However, some biased randomness or noise is also in-
cluded in the rules for voting. The overall magnitude of this
noise corresponds to an effective temperature, and the bias
towards one of the two parties is analogous to the application
of an external magnetic field in the Ising model. PC occurs
below a critical noise amplitude for sufficiently small bias.
This behavior is elucidated by a heuristic analysis of the
evolution of droplets of preferred party votes embedded in a
state dominated by votes for the disfavored party. This analy-
sis reveals that these preferred droplets do not grow, but
rather shrink at a finite rate �23,24�. The strong asymmetry in
the voting rules is believed to be responsible for PC, which
also occurs in continuum analogs of the Toom model �25�.

The outline of this paper is as follows. In Sec. II, we first
specify our discrete stochastic lattice-gas �LG� model for the
QCP on a square lattice, emphasizing a special feature of the
dynamics in this model. We also describe our kinetic Monte
Carlo simulation procedures. Then, we characterize the
steady-state behavior for the model, specifically generic two-
phase coexistence, which was observed in our previous
simulation study �19�. Next, in Sec. III, we focus on simula-
tion results for the kinetics of relaxation to the steady states
of the QCP for spatially homogeneous systems. We identify
an “effective” spinodal point terminating a metastable active
state for pressures above the two-phase coexistence region
and describe “rapid” relaxation or poisoning kinetics for
pressures above this spinodal pressure. We also analyze
nucleation-mediated relaxation or poisoning for pressures in
the metastable region, and we characterize the dynamics of
poisoned droplets within the two-phase coexistence region.
In addition, for lower pressures below the two-phase coex-
istence region, some unusual aspects of relaxation kinetics
are elucidated by making a connection to bootstrap percola-
tion models. In Sec. IV, we analyze the propagation of inter-
faces with various orientations between the absorbing and
active states in spatially inhomogeneous systems. As noted
above, the dependence of propagation and equistability on
interface orientation underlies the generic two-phase coexist-
ence in the QCP. A summary and discussion of other models
with generic two-phase coexistence, and of various general-
ized QCP-type models, is presented in Sec. V.
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II. ADSORPTION-DESORPTION MODEL FOR QCP:
STEADY-STATE BEHAVIOR

Our adsorption-desorption model realization of the QCP
on a square lattice involves the following steps �1,19�: ran-
dom adsorption of particles at empty sites at rate or “pres-
sure” p and cooperative desorption of particles at rate k /4
where k=0, 1, 2, or 4 denotes the number of diagonally
adjacent pairs of NN empty sites. Thus, one has k=0 for
particles with just zero or one empty NN sites and also for
two empty NN sites which are on opposite sides of the par-
ticle, k=1 for particles with just two diagonally adjacent
empty NN sites, k=2 for particles with three empty NN sites,
and k=4 for particles with all four NN sites empty, as shown
in Fig. 1. Below we use �=��p , t� to denote the coverage—
i.e., the fraction of filled sites—which generally evolves with
time. Also �ss=�ss�p� denotes the value of � in the active
steady state which, intuitively, one expects to exist at least
for low p. In fact, the existence of such a state for sufficiently
small p has been proved rigorously �20,26�. In this small-p
regime, most particles are isolated with a desorption rate of
unity. Consequently, evolution is approximately described by
Langmuir kinetics,

d�/dt � p�1 − �� − � for p � 1, so �ss = p + O�p2� . �1�

For a more systematic expansion of � with p, one might
regard the QCP as a perturbation of a random adsorption-
desorption model. Then, one could use a perturbation-
theoretic analysis within a creation-annihilation operator for-
mulation of the problem to analyze steady-state behavior �2�.
For high p, one should expect that adsorption will swamp
desorption, so that the system will reach a completely cov-
ered or “poisoned” absorbing state with �=��p��1.

Our kinetic Monte Carlo �KMC� simulation analysis of
the behavior of this model is performed on “rectangular-
shaped” �Lx�Ly�-site square lattices with periodic boundary
conditions. In conventional constant-p simulations, one
specifies an adsorption rate p and then runs the simulation
implementing adsorption and reaction with the appropriate
relative rates. In this way, one determines both the dynamics
and the steady-state behavior including the variation of the
steady-state coverage �ss�p� with p. Alternatively, in a
constant-coverage �CC� simulation algorithm �27�, one
specifies a target coverage � and runs the simulation attempt-
ing to adsorb �desorb� if the actual coverage is below �above�
the target �. The fraction of adsorption attempts yields the
pressure p= p���. The two simulation approaches should be
equivalent for a sufficiently large system. In previous studies,

the CC approach has proven particularly useful for analyzing
discontinuous transitions where specifying � anywhere in the
range of the discontinuous jump of � versus p should give
the same “equistability pressure” corresponding to coexist-
ence of the two steady states. However, for the QCP, the
situation proves more complex than for conventional discon-
tinuous transitions where one has a unique equistability pres-
sure.

As indicated in Sec. I, simulations of the QCP demon-
strate the existence of a discontinuous transition from active
to absorbing states with increasing p. More specifically, start-
ing from an empty lattice, conventional simulations reveal
the evolution to a stable active state for 0� p� peq

*

�0.0944, where �ss increases monotonically with p to a
maximum of �ss�p= peq

* ��0.17 �see Fig. 2�. In this regime,
simulations indicate that droplets of the absorbing state em-
bedded in the active state never grow indefinitely; i.e., the
state is stable against local perturbations �see Sec. III C for a
detailed discussion�. For larger p, the system eventually poi-
sons reaching the absorbing state, as shown in Secs. III A
and III B. Due to a special feature of the QCP rules described
below, the absorbing state is always stable against local per-
turbations; i.e., an isolated droplet of the empty or active
state can never grow for any p�0. Thus, one might assign
generic two-phase coexistence for 0� p� peq

* , although be-
low we will impose a more restrictive definition.

Remarkably, CC simulations reveal that the equistability
pressure at which a stationary planar interface is formed be-
tween the active and absorbing states depends on the inter-
face orientation S �19�. We denote this pressure by peq�S�.
These simulations were performed in a rectangular system
with Ly =SLx containing an initial perfect strip of the absorb-
ing state with slope S. The strip quickly equilibrated but
remains stable, its overall slope being preserved by the peri-
odic boundary conditions. Specifically, peq�S� displays a
maximum of peq�S=1�=0.094 43±0.000 03 �corresponding
to peq

* � and decreases with increasing S to a minimum of
peq�S→��=0.0869±0.0005 �19�. By symmetry, one has that
peq�S�= peq�1/S�. Conventional simulations support these ob-

FIG. 1. �Color online� Schematic of desorption processes and
rates in the QCP. Solid �open� circles denote particles �empty sites�
on the square lattice. Desorption rates �k values� for the central
particle are indicated above �below� the various configurations.
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FIG. 2. Equation of state for the QCP: steady-state coverage,
�=�ss, versus p. The lower solid curve is the active steady state for
which a metastable extension is indicated. The solid vertical lines
denote the boundaries of the generic two-phase coexistence region.
Inset: equistability pressure peq�S� versus interface slope S.
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servations: for p	 peq�S�, the active state displaces the ab-
sorbing state separated from it by a planar interface of slope
S, and for p� peq�S�, the opposite is true. See Sec. IV for a
comprehensive analysis of interface propagation.

Reformulating the above observations, for peq�S=��	 p
	 peq�S=1�, the active state will displace the absorbing state
separated from it by a planar interface with a slope suffi-
ciently close to unity. Also, the absorbing state will displace
the active state separated by a planar interface with a slope
sufficiently close to S=�. Thus, in this regime, both states
are stable against certain nonlocal interfaces, in addition to
being stable against local perturbations by embedded drop-
lets. Using this more restrictive definition, we associate PC
only with the regime peq�S=��	 p	 peq�S=1�= peq

* . Cer-
tainly, we are not providing a rigorous proof of PC for this
model. However, we believe that the discussion in Sec. III C
provides a clear heuristic picture. Finally, we mention that
for 0� p� peq�S=��, the absorbing state is not stable rela-
tive to the active state separated from it by a planar interface
with any slope 0	S	�.

At this point, it is appropriate to emphasize that the spe-
cific form of the desorption rules in the QCP implies certain
special features for the dynamics in this model. First, it is
clear that a vertical strip of the poisoned state �or even a
single vertical column� can never be eroded for any p�0.
The same is true for horizontal strips. Particles in such strips
can never have more than one empty NN site and thus have
k=0. Consequently, analysis of the evolution of vertical
strips and the determination of peq�S=�� above are quite
delicate: while a vertical strip will not expand in an infinite
system for p� peq�S=��, it will expand in a finite system
due to the certainty of completion of additional filled rows of
sites �which corresponds to falling into a new absorbing
state�. Thus, careful analysis of the size dependence of be-
havior is required to accurately determine peq�S=�� �19�.
Second, an isolated empty patch or an isolated patch of the
active state embedded in the absorbing state can never grow
outside of a rectangle inscribing that patch. Thus, eventually,
the patch must be filled in for any p�0; i.e., the system will
evolve to the absorbing state with probability of unity �1�.
This feature automatically guarantees the above mentioned
stability of the absorbing state against local perturbations for
any p�0.

Finally, having introduced our adsorption-desorption ver-
sion of the QCP, we mention that one motivation for consid-
eration of such lattice-gas models is application to the mod-
eling of catalytic reactions on single-crystal surfaces. Such
reactions can exhibit discontinuous poisoning-type transi-
tions. The ZGB model �5� was intended to describe surface
science studies of CO oxidation on single-crystal catalyst
surfaces. However, under typical low-pressure conditions,
CO has a high surface mobility which produces a strong
bistability rather than a discontinuous transition �28�. Thus,
the jump in coverages or in the CO2-production rate ob-
served experimentally upon increasing the CO partial pres-
sure corresponds to a spinodal point, rather than to the dis-
continuous transition at an equistability point. In fact,
behavior with strong bistability is better captured by hybrid
models directly incorporating infinite CO mobility but finite

mobility for oxygen �28�. However, for high-pressure cataly-
sis, CO surface mobility is inhibited which allows strong
fluctuations and sharp interfaces to develop. In this regime,
basic aspects of behavior could be qualitatively similar to
that displayed by simpler ZGB- or QCP-type models with
limited or zero surface mobility �29�.

III. RELAXATION KINETICS IN THE QCP

A. “Rapid” poisoning kinetics above the metastable region

The traditional picture of discontinuous transitions holds
that a state which is stable below the transition extends to a
metastable state above the transition for a finite region in
parameter space which is terminated by a spinodal point.
Thus, for the QCP, one would expect a metastable active
state to exist for some finite range of p� peq�S=1�. However,
the precise nature and even the existence of such metastable
extensions is a subtle question. For equilibrium Ising-type
interacting lattice-gas models, it has now been demonstrated
rigorously that there does not exist a unique analytic meta-
stable extension of the stable state above the transition
�30,31�. Consequently, the spinodal point is not uniquely de-
fined. However, instead one can generate a C� family of
metastable extensions in a rather natural and simple way by
following the dynamics of the model. The latter approach is
adapted for the QCP below in Sec. III B.

For the QCP �and for similar models with discontinuous
transitions�, one might expect that there exists some “effec-
tive” spinodal value ps�eff� �or narrow range of p values�,
such that poisoning for p� ps�eff� occurs much more quickly
than in the metastable region for peq�S=1�	 p	 ps�eff�.
Based on mean-field theories �see Ref. �32� and Appendix
A�, for p� ps�eff�, one might expect the rate of poisoning to
be controlled primarily by the distance from the effective
spinodal, 
ps= p− ps�eff� at least for sufficiently small 
ps. In
this case, one has that ����
pst�. Thus, an estimate of
ps�eff� can be made by plotting � versus 
pst and achieving
collapse of curves for suitable choice of ps�eff�. A similar
approach was reasonably effective for the ZGB model and its
extensions to include surface mobility �7�. Figure 3�a� shows
the evolution of � versus t starting from an empty lattice at
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FIG. 3. �a� Rapid poisoning kinetics above the effective spinodal
point ps�eff� for a range of p=0.110, 0.115, 0.120, and 0.125. �b�
Scaled poisoning kinetics for the above p values indicating that
ps�eff�=0.0997±0.0005.
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t=0 for a range of p=0.110–0.125 expected to be above
ps�eff�. Indeed, good collapse of these curves plotted against
the rescaled time 
pst is achieved choosing ps�eff�
�0.0997±0.0005, as shown in Fig. 3�b�. Similar results are
achieved using a higher range of p=0.0130–0.0145 with a
value of ps�eff� in the range specified above yielding the best
collapse.

B. Nucleation-mediated poisoning in the metastable region

To motivate our analysis of nucleation-mediated poison-
ing for the QCP, it is appropriate to first review the heuristic
framework for nucleation in equilibrium models. The basic
idea is that there exists a finite free energy barrier Enuc to the
nucleation of a critical droplet of the stable phase in a back-
ground of the metastable phase �where subcritical droplets
shrink and supercritical droplets grow�. One can show that
Enuc�b�2 /�. Here, b�0 is a constant, � denotes the line
tension of the interface between the coexisting states at the
transition, and � is a measure of the �small� distance from
the transition—i.e., the driving force for creation of the
stable phase �31�. Then, critical droplets of the stable state
are nucleated at a rate knuc
exp�−�Enuc�, where � is the
inverse temperature. Once critical droplets are formed, they
grow with a velocity v
� �31� ignoring finite-curvature cor-
rections. We consider a large system where the nucleation-
mediated transition from the metastable to the stable state
occurs by the spontaneous formation and growth of many
supercritical droplets. The kinetics of this process is reason-
ably described within a continuum two-dimensional Avrami
formulation �33�. In such formulations, droplets are nucle-
ated at random locations in the plane at a fixed rate and
thereafter expand at constant velocity with a fixed shape. If
�m ��s� denotes the density in the metastable state �stable
state�, then it follows that

��t� � �m + ��s − �m��1 − exp�− a�t/�char�3�� , �2�

where

�char 
 v−2/3k−1/3.

Using the results above, the characteristic time for nucleation
satisfies �char
�−2/3exp��nuc/�� where �nuc� 1

3b��2. The
procedure for generating a C� family of metastable states
�labeled by �� is to run the dynamics starting from a suitable
state near the metastable state for a time �run or the order of
exp�� /�� where �	�nuc �30,31�. Since �run diverges expo-
nentially as �→0, it is not surprising that one obtains a C�

extension of the stable state. However, such extensions can
vary strongly with � and have somewhat limited physical
significance. Thus, they may provide limited insight into the
location of any effective spinodal point. Extensions with the
most physical significance presumably correspond to choos-
ing � close to �nuc.

For the nonequilibrium QCP, it is reasonable to propose
that the rate of nucleation of critical droplets of the absorbing
state within a background for the metastable state for p
� peq�S=1� satisfies

knuc 
 exp�− cnuc/
p� , �3�

where


p = p − peq�S = 1� � 0,

noting that 
p�0 replaces ��0 above �cf. Ref. �11� which
considers the ZGB model�. The parameter cnuc should encode
information about the effective line tension between coexist-
ing active and absorbing states in the QCP. These critical
droplets will grow with a velocity v

p �7,8,28� at least if
one ignores corrections due to finite curvature. Then, �2�
should apply to this nonequilibrium system defining a char-
acteristic time

�char = �
p�−2/3 exp�cnuc/�3
p�� , �4�

and setting �s=1 corresponding to the stable absorbing state.
To obtain a C� family of extensions of the active state
�labeled by c	cnuc�, one can naturally run the QCP
starting from an empty lattice for a time �run�c�

 �
p�−2/3exp�c / �3
p��. More practically, a natural extension
might be obtained by choosing �run as some fixed small
fraction of �char. One such metastable extension is shown in
Fig. 2.

Our focus here is on analyzing the Avrami-type
nucleation-mediated poisoning kinetics in the QCP for suit-
ably small 
p and in extracting a value for the key parameter
cnuc. The value of p� peq�S=1� �determining 
p� cannot be
chosen too high since one must remain within the metastable
region. On the other hand, 
p cannot be too small since then
simulations for a finite-size system would generate only a
single droplet rather than the multiple droplets assumed in
our Avrami analysis �11�. The value p=0.098 �or 
p
�0.0036� for a �1024�1024�-site system meets these re-
quirements, and Fig. 4 shows the corresponding evolution
during poisoning. To quantify the kinetics, Fig. 5�a� shows
the evolution of � versus t starting from an empty lattice at
t=0 for a range of p=0.0975–0.0990 in the metastable re-
gion above peq�S=1��0.0944. Collapsing these curves by
plotting against a rescaled time t /�char indicates an optimum
choice of cnuc in the range cnuc=0.02–0.03, as shown in Fig.

FIG. 4. Images of QCP configurations in a �1024�1024�-site
system during nucleation-mediated poisoning for p=0.098 in the
metastable region. Images correspond to unevenly spaced times but
roughly equal coverage increments �time increasing from left to
right, top then bottom rows, with coverages of 0.20, 0.35, 0.57,
0.76, 0.90, and 0.97�.
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5�b�. We also confirm that the shape of these collapsed
curves is well described by the Avrami form �2�.

Of course, the detailed evolution of configurations in the
QCP, as shown in Fig. 4, is somewhat different than in clas-
sic continuum Avrami models. This is partly due to discrete
lattice effects and partly due to fluctuations in the shapes of
growing droplets. It is thus appropriate to note that discrete
lattice versions of the Avrami model with deterministic drop-
let growth have been developed for which the kinetics is also
exactly solvable and significantly for which the kinetics have
essentially the same form as in the continuum model �34�.
Perhaps, even more relevant is the observation that lattice
versions of the Avrami model with stochastic droplet growth
have also been developed. These are usually referred to as
cooperative sequential adsorption �or filling� models �34,35�.
Evolving configurations in these simple irreversible models
do resemble those for the QCP shown in Fig. 4.

C. Dynamics of poisoned droplets in the two-phase
coexistence region

Next, we further elucidate the unusual generic two-phase
coexistence or true bistability exhibited by the QCP. For
peq�S=��	 p	 peq�S=1�, we consider the evolution of poi-
soned droplets of the absorbing state which are embedded in
the active state. Such droplets form spontaneously, although
in our study it is more convenient to embed such droplets
“by hand.” Since the absorbing state is stable, we must ra-
tionalize why such droplets ultimately disappear rather than
grow until the �stable� absorbing state takes over the system.

To characterize such droplet dynamics, it is instructive to
focus on a “worst-case scenario.” Imagine that a square-
shaped droplet is formed or created with sides orientated
with the principal lattice directions �i.e., with slopes S=0 and
S=��. Then, since p� peq�S=��, the sides of this droplet
should initially tend to grow outwards with finite velocity.
Assuming that growth at the corners of this droplet is inhib-
ited, one expects a tendency towards the development of a
roughly octagonal shaped droplet. Then, since p	 peq�S=1�,
the facets with slope S= ±1 at the corners will tend to shrink
and the sides with slopes S=0 or � will grow out, yielding a
diamond-shaped droplet. Thereafter, this diamond-shaped
droplet will naturally shrink. From standard simulations, we

can readily explore the progression of droplet shapes for
various p. Such analyses reveal that the simple progression
in geometric shapes mentioned above is somewhat concealed
due to large fluctuations. Figure 6 shows simulations with an
initial �128�128�-site droplet and with p=0.0940. Even
with this large size and “high” p close to peq�S=1�, fluctua-
tions in droplet shape are significant and shrinkage of clus-
ters starting at the corners is perhaps more evident than
growth of the S=0 and S=� sides. However, analysis of the
total coverage of the system during this simulation �not
shown� does reveal an initial increase corresponding to the
regime of net growth from a square- to diamond-shaped
droplet. Then, a fairly sudden transition occurs to a regime of
nonlinear decrease of the total coverage consistent with the
picture of a diamond-shaped cluster shrinking with constant
velocity.

Of course the above analysis of droplet evolution is heu-
ristic rather than rigorous and the understanding of behavior
at droplet corners is limited. However, as droplets become
larger, a simple deterministic geometric picture of evolution
becomes more applicable where behavior is controlled by the
orientation dependence of the propagation of planar inter-
faces. In contrast, for smaller clusters, simple geometric evo-
lution is largely concealed by fluctuations.

D. Relaxation kinetics for p=0 or p=0+: Bootstrap percolation

Relaxation behavior for p below the two-phase coexist-
ence regime is strongly impacted by the special feature of the

FIG. 5. �a� Nucleation-mediated poisoning
kinetics in the metastable region for a range of
p=0.0975, 0.0980, 0.0985, and 0.0990. Data
are taken from simulations on a large �1024
�1024�-site lattice to ensure the system is in the
multidroplet regime and to reduce significant sta-
tistical fluctuations. �b� Scaled poisoning kinetics
for the above p values in terms of the character-
istic time �char given in the text. The best data
collapse is for cnuc=0.024. Also shown as solid
curves are the Avrami kinetics �1� with best-fit
values of a=0.0002 �cnuc=0.024� and a=0.008
�cnuc=0.036�.

FIG. 6. Dynamics of a large initially square poisoned droplet in
the two-phase coexistence region for p=0.0940. The system size is
256�256 sites, and the initial droplet size is 128�128 sites. Im-
ages are shown for equal time increments of 	4000 time units
�time increasing from left to right, top then bottom rows�.
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QCP which makes the absorbing state stable against local-
ized perturbations �i.e., an isolated active or empty droplet
embedded in the absorbing state can never survive�. In gen-
eral, to systematically analyze relaxation kinetics in models
with unstable or metastable absorbing states, typically one
might start with a state corresponding to a lattice partially
filled by a random distribution of particles with initial cov-
erage �i. Then, for low initial vacancy concentrations, �v
=1−�i�1, the system is initially close to the absorbing state
and one can follow evolution to the active state �7�.

However, there is some deviation from this simple sce-
nario for the QCP. First, consider the simplest case for p=0
where particles with k�0 irreversibly desorb in the absence
of adsorption. For a strictly finite �Lx�Lx�-site system �i.e.,
Lx=Ly =L, say�, one might expect the following scenario de-
scribed in terms of “small” critical value for �v=�v

*�L�. For
�v	�v

*, empty square or rectangular patches will be formed
and grow around any clusters of vacant sites. However, typi-
cally the system will eventually “freeze” into a distribution
of small isolated nonoverlapping empty rectangles. �This dis-
tribution will include vacant squares and single vacant sites.�
In this case, the system would never reach the active state for
p=0 which corresponds to an empty lattice. For �v��v

*,
these growing vacant rectangular patches can link suffi-
ciently to percolate and this leads to the ultimate removal of
all particles from the lattice.

More generally, for infinitesimal nonzero pressure p=0+,
it then follows that this system of size L would typically
reach the active state only for �i	�i

*�L��1−�v
*�L� and

would eventually reach the absorbing state for �i��i
*�L�

�1−�v
*�L�. Indeed, simulations indicate that there does exist

such a critical value for the initial vacancy coverage, al-
though behavior as L=Lx→� is more subtle as we describe
below.

A detailed characterization of the above critical behavior
follows from recognizing that the dynamics of the p=0 QCP
model maps onto that of a specific bootstrap percolation �BP�
model. In the standard BP model on a square lattice, one
culls particles which have a two or more neighboring empty
sites �36,37�. This standard BP model is isomorphic to that of
so-called 2n diffusion percolation �2n DP� on a square lattice
where one adds particles at empty sites if any two or more
neighboring sites are occupied �36�. The QCP dynamics for
p=0 is actually isomorphic to a variant of 2n DP denoted by
s2n DP which requires at least two of the occupied neighbors
of the empty site be diagonal neighbors �36�.

We translate the key result for these types of BP or DP
models into the language used in the current paper where one
starts with a “small” random distribution of vacancies of
density �v on an otherwise occupied lattice and progressively
removes particles according to the prescribed QCP rules.
Then, there exists a constant � such that the critical value
�v

*=�v
*�L� of the vacancy density satisfies �v

*�� / ln�L�, as
L→�. Thus, one has �v

*→0 and �i
*→1, as L→�; i.e., an

infinite system will always reach the active state no matter
how close is the initial coverage, �i	1, to unity. A more
common presentation of this result is that for a fixed initial
�v, there exists a critical linear system size L=L*��v�
	exp�� /�v�, such that when L�L*, typically frozen distri-

butions of isolated empty rectangular patches result. How-
ever, for L considerably in excess of L*, the lattice will typi-
cally completely empty. The above relationships have been
demonstrated rigorously for the standard BP or 2n DP model
�38,39� and are supported by numerical simulations for sev-
eral variants �including s2n DP�. The dynamics of interest
for small �v relies on rare bottleneck events—i.e., the linkage
of large clusters of vacant sites, which has also been de-
scribed as “capture of a critical droplet” �38�.

A key conclusion from the above results is that there are
very strong finite-size effects on the dynamics as reflected by
the exponential increase of L* with the inverse of �v. Simu-
lation results indicate that ��0.25 for standard BP consid-
ering sizes up to L�2�104 �although this � value is far
from the true asymptotic value �39�� and ��0.47 for s2n DP
or the p=0 QCP considering sizes up to L�800 �37�. The
larger value of � in the latter case should be expected since
desorption is more difficult for the p=0 QCP than for stan-
dard BP. Thus, for a given size L, a larger value of �v

*

	� / ln�L� is required for percolative removal of all particles
in the p=0 QCP compared to standard BP. Equivalently, for
a given �v, a larger size L*��v�	exp�� /�v� is required for
such percolation in the p=0 QCP.

E. Relaxation kinetics for lower p: Simulation results

Next, we turn to the issue of characterizing the relaxation
kinetics in the QCP for general lower �but nonzero� p start-
ing with a random distribution of vacancies of coverage �v.
Here, we select a finite system size—e.g., L=256 or 512.
Then, in our standard analysis for each fixed p�0, we run
simulations for various �v to determine the critical value
�v

*�p ,L� which separates evolution to a poisoned state �for
�v	�v

*� and to the active state for ��v��v
*�. In the former

case, the system evolves to produce an array of separated
active droplets which can be inscribed within a distribution
of nonoverlapping isolated rectangles. Once such a state is
achieved, it is clear that the system must eventually evolve to
an absorbing state just as for p=0+. For the latter case, the
active droplets link sufficiently to percolate, leading to evo-
lution to the active state. Strictly speaking, for �v sufficiently
close to �v

*, there can be a significant probability for the
system to reach either absorbing or active state. Thus, more
precisely, we should state that the system reaches the poi-
soned state with probability above �below� 0.5 for �v	�v

*

��v��v
*�. From a series of such analyses for various p, we

can map out the dependence of �v
*�p ,L� versus p. See the

inset to Fig. 7�b� which actually plots a closely related quan-
tity �see below�.

The above analysis strictly applies only for p	 peq�S=1�.
However, with some ambiguity, one can extend the analysis
into the metastable region at least for p slightly above
peq�S=1�. Here, the critical coverage �v=�v

*�p ,L� separates
evolution to the absorbing state and to the metastable state as
shown in Fig. 7�a�.

Choosing �v=�v
*�p ,L� for large L, one finds that after

some transient period, the coverage evolves from the initial
value of �i

*�p ,L�=1−�v
*�p ,L� to a final value of �f

*�p ,L�
which is quasistationary for thousands of time units and is
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typically somewhat different from �i
*�p ,L�. For example,

Fig. 7�a� shows that �i
*�0.57 versus �f

*�0.4 when p
=0.0950 and L=256. We naturally map out �f

*�p ,L� versus p,
which is actually the quantity shown in the inset to Fig. 7.
We regard this dependence as more fundamental than that of
�i

*�p ,L� versus p, which should depend more strongly on the
specific choice of the random initial conditions. The form of
the �f

* versus p curve is somewhat reminiscent of the varia-
tion of the unstable steady-state coverage with p in mean-
field-type treatments of the QCP �see Ref. �32� and Appendix
A�. However, we shall see below that this behavior is not
associated with an unstable steady state.

It should be emphasized that the form of �f
*�p ,L� versus p

shown in Fig. 7 exhibits significant finite-size effects. This is
most obvious for p=0+ where �f

*�0+ ,L�	1−� / ln�L�→1,
as L→�. For moderate p, no significant finite-size effects
are evident from our simulations �and this is consistent with
the picture below for evolution with a quasi-steady-state cov-
erage�. However, it is difficult to rule out finite-size effects
since they are weak and subtle. Nonetheless, one can say that
as L→�, at least the portion of the �f

*�p ,L� versus p curve
near p=0 will rise to go smoothly through �f

*�p=0,L=��
=1. We assume without proof that �f

*�p�0,L=��	1.
We also note that the variation of �f

*�p ,L� with p can be
determined by an alternative analysis where simulations are
performed in an �L�L�-site system where one fixes �v

��v
*�L�—i.e., �i	1−�v

*�L�—and explores evolution for
various p. There exists a critical pressure p*��v ,L� such that
for p	 p*��v ,L�, the system will evolve to the active state
and for p� p*��v ,L� the system will become poisoned �since
evolution produces an array of active droplets which can be
inscribed within a distribution of nonoverlapping isolated
rectangles� as shown in Fig. 7�b�. When p= p*��v ,L�, after a
transient period, the coverage evolves from its initial value
�i=1−�v of to a final quasistationary value of �f

*. Plotting
this �f

* versus �i recovers the curve shown in the inset to
Fig. 7.

Finally, we characterize in more detail the evolution of
states with quasistationary coverage �=�f

* observed for pres-
sure p upon choosing an initial �v=�v

*�p ,L�. As noted above,
such behavior is reminiscent of unstable steady states in
mean-field models. In fact, robust unstable steady states can
exist in lattice-gas models in the hydrodynamic limit of rapid
hopping of some species �28�. However, such states are not

expected for models with finite mobility. Indeed, monitoring
the evolution of the system from the initial random distribu-
tion of vacancies �or filled sites� as shown in Fig. 8 reveals a
complex and persistent coarsening process. Just as for BP
slightly above the percolation threshold one finds slow coa-
lescence of overlapping rectangular clusters of the active
state to form progressively larger inscribing rectangular clus-
ters. This coarsening process �which tends to reduce the cov-
erage� is exactly counterbalanced by the filling and disap-
pearance of isolated clusters of the active state �which tends
to increase the coverage�.

IV. PROPAGATION OF INTERFACES SEPARATING
ACTIVE AND ABSORBING STATES

A. Analysis for a vertical interface with slope S=�

Analysis of the propagation vertical interfaces in the QCP,
and thus determination of peq�S=��, is delicate for reasons
outlined below. For a finite �Lx�Ly�-site system with peri-
odic boundary conditions which includes a vertical filled
strip of length Ly, particles within completely filled columns
of the strip can never desorb. Consequently, the strip �and in
particular its core� can never shrink. Consider the partially
completed columns adjacent to the completed columns of the
strip. Completion of each such column corresponds to falling
into a new absorbing state. Consequently, this event must

FIG. 7. �a� Relaxation kinetics for fixed p
=0.0950 and L=256 in the metastable region just
above the two-phase coexistence region and for
varying the initial coverage �0��i �shown�. The
critical initial coverage separating evolution di-
rectly to the absorbing state and to the metastable
state is �i

*�p=0.0950,L=256��0.57 for which
�f

*�p=0.0950,L=256��0.4 Shown for compari-
son as a dotted line is evolution to the metastable
state for �i=0. �b� Relaxation kinetics for fixed
initial coverage, �i=0.7, varying p �shown�. In-
set: �f

*�p ,L� versus p �shown as � symbols� for
L=256.

FIG. 8. Images of QCP configurations for a �256�256�-site
system during the coarsening process choosing �v=�v

*�p ,L=256�
=0.3 �so �i=0.7� for p=0.084. These parameters correspond to the
central curve in Fig. 7�b�. Images are shown for equal time incre-
ments of 	400 time units �time increasing from left to right, top
then bottom rows�.
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eventually occur with probability unity in conventional simu-
lations �for any p�0� in a finite system. It must also occur in
CC simulations provided there are sufficient particles in the
system to allow column completion. In this sense, either con-
ventional or CC simulations in finite systems are potentially
“corrupted.” This is why our previous CC simulations pro-
vided a careful analysis of finite-size effects �19�. The poten-
tial problem is that this “artificial” finite-size propagation can
lead to an underestimate of peq�S=�� if the latter is deter-
mined by the absence of any expansion of the absorbing
state. We are thus motivated to systematically explore finite-
size effects in standard simulations for the propagation of
vertical interfaces.

One strategy to systematically assess finite-size effects is
to perform simulations for a sequence of system sizes with
Ly =2nLx for increasing n containing a vertical interface of
length Ly. The tendency for finite-size corruption corre-
sponding to “artificial” column completion should decrease
as n→�. To explore this phenomenon, we show in Fig. 9 the
dependence on Ly of the number of completed columns as a
function of time starting with a single complete vertical col-
umn. For a lower pressure of p=0.088, columns are artifi-
cially completed for small Ly, but this rate of column
completion appears to vanish as Ly→�, consistent with the
choice of p� peq�S=���0.087. For a higher pressure p
=0.092 satisfying peq�S=��	 p	 peq�S=1�, columns are
completed artificially quickly for small Ly. The rate of
completion does decrease for increasing Ly, but now satu-
rates at a finite value for Ly→�. This is consistent with the
choice p� peq�S=��.

Finally, it is instructive to analyze the nonzero propaga-
tion velocity of a vertical interface, V�S=� , p�	0 versus p
� peq�S=�� for a large system �where finite-size corruption
is negligible�. Results from our standard constant-p simula-
tion are shown in Fig. 10.

B. Analysis for interfaces with slopes 1ÏS	�

It is appropriate to present a comprehensive analysis of
the dynamics of interfaces separating active and absorbing
states with various prescribed slopes S. This behavior can be
obtained from standard constant-p simulations. Again, the
orientation dependence of propagation underlies the generic
two-phase coexistence or true bistability of the QCP. Here,

we consider systems with Ly =SLx and with periodic bound-
ary conditions starting from an initial filled strip of slope S.
After a possible initial transient, the total number of filled
sites in the system changes linearly in time. By monitoring
this change and accounting for the different local coverages
of the absorbing state, �=1, and the active state, �=�ss�p�, as
described above, one can readily extract the propagation ve-
locity V�S , p� as a function of p.

Results for V�S , p� versus p with S=1, 2, and 4 are shown
in Fig. 10 for a broad range of p�0. For 0� p� peq�S�, the
active state is more stable than the absorbing state and dis-
places the latter �for 0	S	��. We assign V�S , p��0 in this
case. Since V�S , p�=0 when p= peq�S�, this feature allows an
independent check on the results for equistability pressures
from CC simulations. Estimates of peq�S� from this analysis
are consistent with those presented in Sec. II. As p increases
above peq�S�, the absorbing state becomes more stable and
displaces the active state, so V�S , p�	0. Interface configura-
tions corresponding to the equistability pressure are shown in
Fig. 11 for various slopes S. These were obtained from CC
simulations.

Some more detailed discussion is appropriate for the re-
gime where p� peq�S� and V�S , p�	0 as the associated in-

FIG. 9. Number of completed columns versus
time for vertical interfaces of various lengths,
Ly =64, 128, 256, 512, 1024 �shown�. Results are
presented for �a� p=0.088 and �b� p=0.092.

FIG. 10. Interface propagation velocity V�S , p� versus p, in
the QCP for broad range of p. Behavior is shown for interface
slopes S=1, 2, 4, and � �or 0�. Inset: behavior near the equistability
pressures and approaching the effective spinodal point. Note that
V�S=� , p��0 for p	 peq�S=���0.869 and that V�S=� , p�	0,
only for p� peq�S=��.
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terface propagation may not be well defined. First, consider
the case S=1 where the active state is only metastable for
p� peq�S=1�, and so interface propagation is transient; i.e.,
propagation only persists until spontaneous nucleation-
mediated decay of the active state. Just as for the active-state
coverage, �ss�p� versus p, one does not expect there to exist
a unique analytic extension of V�S=1, p� versus p into the
metastable region p� peq�S=1�. However, presumably there
does exist a C� family of extensions obtained by simulation
of transient front propagation for times on the order of �run�c�
given in Sec. III A with and c	cnuc. Second, consider the
case S�1 where there is a finite range of pressure, peq�S
�1�	 p	 peq�S=1�, where propagation of the absorbing
state into the active state is persistent since the active state is
stable against nucleation. In this regime, propagation and the
associated velocity V�S , p�	0 are well defined. Again, a
unique analytic extension will not exist for p� peq�S=1�.

An expanded view of the behavior of V�S , p� versus p in
this regime of p� peq�S� is shown in the inset to Fig. 10. It
appears that there is a confluence of the curves for different S
at some p value above peq�S=1�. Examination of interface
propagation in mean-field treatments of the QCP extended to
treat spatially nonuniform systems also indicates a tendency
for such velocity curves to merge quite close together at a
spinodal point �32�. �This spinodal point is well defined in
mean-field treatments.� Thus, Fig. 9 indicates an effective
spinodal point for the active metastable state in the QCP
somewhat above p=0.098, consistent with the analysis in
Sec. III A.

C. Irreversible shrinkage of the absorbing state for p=0

Although not central to the analysis of generic two-phase
coexistence, for a complete analysis of interface propagation
in the QCP, we consider in more detail the special case when
p=0. Here, surprisingly, we are able to present exact results
for the nontrivial propagation behavior. For 0	S	�, this
case corresponds to irreversible shrinkage of a strip of the

absorbing state. The exact analysis is perhaps most readily
achieved by recognizing that the dynamics of shrinkage the
interface of the absorbing state in the p=0 QCP model maps
exactly onto the dynamics of irreversible growth of an inter-
face in the �1+1�-dimensional bridge-site deposition model
�40� or, equivalently, onto the single-step deposition model
�40–42�. Both these models involve random deposition at
specific allowed sites. The dynamics in these models is in
turn equivalent to that of a fully asymmetric spin exchange
model �i.e., an up spin can exchange with a neighboring
down spin only on the left, say�, where spin up �down� cor-
responds to a step up �down� in the single-step model. Figure
12 shows an interface with mean slope S=1 in the QCP
drawn aligned horizontally and corresponding to a flat inter-
face in the single-step model with mean slope � of zero. This
in turn corresponds to the spin exchange model in the case of
equal populations of up and down spins—i.e., with zero net
magnetization �also denoted by ��. More generally, the
equivalence of these models extends to interfaces and sur-
faces with more general orientations. Specifically, an inter-
face with mean slope S= �1+�� / �1−���1 in the QCP cor-
responds to a surface with mean slope 0	�= �S−1� / �S+1�
	1 in the single-step deposition models and vice versa �as
the natural axes differ by 45°�.

In the exact analysis, one considers systems with a finite
width of interface �specifically, a finite width in the horizon-
tal direction in Fig. 12 corresponding to S=1 or �=0� where
regular or skewed periodic boundary conditions preserve the
mean slope. Then, in the reference frame moving with the
interface or growing surface, there are a finite number of

FIG. 11. Configurations of equistable interfaces between the ac-
tive and absorbing states in the QCP for various interface slopes
S=1 �top left�, 2 �top right�, 4 �bottom left�, and � �bottom right�.
Images sizes are 256�256 sites.

FIG. 12. �Color online� Schematic demonstrating the equiva-
lence of �a� irreversible erosion of the absorbing state in the QCP
with p=0, �b� interface growth in the �1+1�-dimensional bridge
site, �c� interface growth in the single-step deposition models, and
�d� evolution in a fully asymmetric spin exchange model. We indi-
cate the active sites for erosion by desorption in the QCP �a� and for
deposition in models �b� and �c�. The active sites for spin exchange
are circled in �d�. The thin diagonal lines in �b� guide the eye in
identifying local peaks and valleys of the growing interface.

GUO, LIU, AND EVANS PHYSICAL REVIEW E 75, 061129 �2007�

061129-10



possible configurations. A simple but critical observation for
the deposition models is that each configuration has the same
number of local valleys and peaks �41�. Thus, for the pre-
scribed deposition dynamics, each configuration can be de-
stroyed or created in the same number of ways. Destruction
occurs by deposition which can occur only at a local valley,
and creation occurs starting from a configuration which dif-
fers only by removal of a particle at one peak to create a
local valley �and by deposition at that valley�. This observa-
tion implies that in the steady state, all allowed configura-
tions have the same weight �40–42�. Given this information,
one can immediately calculate the steady-state values of vari-
ous quantities of interest such as the density of local valleys
which determines the propagation velocity. Then, one can
extract values of these quantities in the limit of infinite sys-
tem width �which is of primary interest�.

The central result from this analysis for the single-step
deposition model on an infinite surface with a deposition rate
of unity is that the film growth velocity in the direction or-
thogonal to �=0 satisfies V����= 1

2 �1−�2� for orientations
0���1 �40,42�. Thus, the growth velocity normal to the
mean orientation of the film surface satisfies V���
=V���� / �1+�2�1/2. Translating the result into the language
of the QCP for p=0, one must note that all particles desorb-
ing from the eroding interface have exactly two empty NN
sites, so k=1 and the desorption rate is 1

4 . Also, inspection of
Fig. 12 indicates that distances must be rescaled by a factor
of 1 /
2. Thus, it follows that infinite interfaces in the p=0
QCP has a propagation velocity

V�S � 1,p = 0� = V���/�4
2� = 1
4S�S + 1�−1�S2 + 1�−1/2

	 1/�4S� as S → � . �5�

In particular, we note that V�S=1, p=0�=1/ �8
2��0.0884,
V�S=2, p=0�=1/ �6
5��0.0745, and V�S=4, p=0�
=1/ �5
17��0.0485, consistent with simulation results. As
an aside, we mention that the above exact analysis also de-
termines finite-size corrections to the result �5�.

V. SUMMARY AND DISCUSSION

Our realization of the quadratic contact process as an
adsoption-desorption model on a square lattice displays ge-
neric two-phase coexistence or true bistability between an
active state and an absorbing state for a range of adsorption
rates of pressures. This feature derives from the dependence
on interface orientation of the equistability pressure for these
two states. This behavior of the QCP is in marked contrast to
that for discontinuous transitions in equilibrium systems
where equistability occurs at a single pressure.

Indeed, it is natural to compare behavior of the QCP with
the equilibrium states of a reversible adsorption-desorption
model on a square lattice with random adsorption at rate p
and correlated desorption at rate exp�n���. Here, �
=1/ �kT� denotes the inverse temperature, n denotes the num-
ber of occupied NN sites, and �	0 denotes a NN attractive
adspecies interaction. The equilibrium properties of this re-
versible adsorption-desorption model correspond to the 2D
Ising model. For low pressures, the steady-state coverage

satisfies �ss�p�= p+O�p2�, just as in the QCP. Below a critical
temperature, Tc=0.57� /k, increasing p reveals a unique eq-
uistability pressure peq, where �ss�p� undergoes a discontinu-
ous jump corresponding to a transition from a dilute to a
dense two-dimensional phase with �ss�p� closer to unity. The
discontinuous transition disappears as T approaches Tc.

From a broader perspective, generic two-phase coexist-
ence can never occur in conventional equilibrium models
such as the Ising model. This is readily understood since
coexistence requires equality of the chemical potentials for
the coexisting phases, and this occurs only for a single pres-
sure. One perspective on PC in nonequilibrium models in d
spatial dimensions is that the stationary distribution of histo-
ries in these models can be regarded as a constituting “gen-
eralized Ising models” in d+1 dimensions �23�. For these
higher-dimensional systems, the free energy can be identi-
cally zero in a finite region of parameter space.

As noted in Sec. I, perhaps the prototype of generic two-
phase coexistence or true bistability is provided by Toom’s
NEC stochastic cellular-automaton model �22�. The origin of
PC in this model derives from the strong broken symmetry
of the dynamic voting rules. This results in an obvious strong
anisotropy in interface propagation. The dynamic adsorption-
desorption rules of the QCP do not incorporate broken sym-
metry, and the anisotropy in interface propagation underlying
PC is more subtle. One could speculate that PC in the QCP is
related to the presence of an absorbing state, an intrinsically
nonequilibrium feature absent in Toom’s model. However,
this is not the case, as shown in our discussion in Appendix
B of generalizations of the QCP �19�. We should emphasize
that PC has been observed in a variety of other nonequilib-
rium models. One such class models pertains to interface
motion in the presence of pinning sites, where both pinned
and propagating states exist �21�. Bistability derives from the
feature that a greater driving force is required to depin an
interface rather than to just maintain motion. Another class
of examples derives from nonequilibrium adsorption-
desorption models with enhanced binding at the substrate
�43�. Under suitable conditions, PC exists between a nonwet-
ting phase �corresponding to the film surface pinned to the
substrate� and a growing phase. Although not described in
Ref. �43�, one can relate PC in this model to anisotropy in
propagation of the growing phase. Another class of stochas-
tic cellular-automaton models has been applied to explore
generic stability of temporally periodic states �against the
expected desynchronization of spatially separated regions�
�44�. Again analysis of the evolution �and shrinkage� of tem-
porally out-of-phase droplets is instructive. Currently, we are
exploring the hypothesis that PC is a very general phenom-
enon in nonequilibrium adsorption-desorption or reaction
models with discontinuous transitions, but that it is typically
difficult discern due to a combination of weak orientation
dependence of interface propagation and due to weak meta-
stability.

In all of the above analyses, consideration of the evolution
�and shrinkage� of droplets of one phase embedded in an-
other is invaluable in understanding the origin of PC. Of
course, the concept of critical droplets has long proved a
valuable tool for characterizing metastability and nucleation-
mediated kinetics in classic equilibrium models �45�. Here,
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the same framework is shown to extend to the consideration
of nucleation-mediated kinetics in the metastable regime just
outside the two-phase coexistence regime in the nonequilib-
rium QCP model. We also note that this approach has been
applied previously for ZGB-type models �7,11�.

Finally, it is natural to consider several modifications or
generalizations of the QCP: �i� introduction of an additional
random desorption pathway which removes the absorbing
state but preserves PC, �ii� introduction of hopping at rate h
which allows connection with the mean-field QCP in the
limit as h→�, �iii� consideration of the QCP on different
two-dimensional lattices which can change the nature of the
phase transition to the adsorbing state, and �iv� “relaxing”
the constraint on desorption in the QCP so that all particles
with two or more empty neighbors can desorb �i.e., the
M =2 threshold contact process�. See Appendices A and B
for further discussion.
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APPENDIX A: MEAN-FIELD QCP IN THE LIMIT
OF RAPID STIRRING

The QCP is naturally generalized to allow hopping of par-
ticles to NN empty sites at rate h. Introducing any degree of
hopping removes the special feature of standard QCP rules
which prohibits growth of isolated empty droplets embedded
in the absorbing phase and which prohibits the shrinkage of
vertical strip of the absorbing state �as noted in Ref. �1��.

Here, we focus on behavior in the h→� rapid-stirring
hydrodynamic limit. We note that for this single-component
model with the conventional prescription of hopping to NN
empty sites, one will recover a simple description of chemi-
cal diffusion with constant diffusion coefficient D=h �where
spatial units are in lattice constants� �46�. In contrast, for
multicomponent models, typically chemical diffusion is non-
trivial in the hydrodynamic limit �even in the absence of
interparticle interactions beyond site exclusion� �28�. Below,
the coverage �=��x� , t� at site x� = �i , j� regarded as a continu-
ous variable, and its evolution for spatially nonuniform sys-
tems is described exactly by the mean-field reaction-
diffusion equation �1�

�/�t� = f��� + D�2/�x�2� , �A1�

where

f��� = p�1 − �� − ��1 − ��2.

It is convenient to write

f��� = − �/��U��� ,

with “potential”

U��� = 1
2 p�1 − ��2 − 1

3 �1 − ��3 + 1
4 �1 − ��4. �A2�

The stable steady states correspond to the minima of U—i.e.,
�=�absorb=1 for all p �the absorbing state� and �=�active�p�
= 1

2 − 1
2 �1−4p�1/2 for p	 ps�mf�= 1

4 �the stable active state�.
These are separated by an unstable steady state with �
=�unstable�p�= 1

2 + 1
2 �1−4p�1/2 for p	 ps�mf�= 1

4 , correspond-
ing to a local maximum of U.

To analyze propagation of planar interfaces with velocity
V between active and absorbing states, one considers solu-
tions of the form �=��x−Vt� �47,48�. Substitution into Eq.
�A1� yields

D�� = − �/���− U���� − V��, �A3�

where the prime denotes derivative with respect to the single
variable. This Newton-type equation describes the motion of
a pseudoparticle with position � subject to a two-hill poten-
tial −U��� and subject to a drag force with drag coefficient V.
The physical interface corresponds to motion from one hill to
the other with �almost� vanishing initial and final velocities.
Equistability corresponds to the case V=0, which by conser-
vation of energy requires that the two hills have equal height.
A simple calculation shows that this corresponds to p
= peq�mf�= 2

9 �0.222 �mean-field� �1,48�. This result also fol-
lows as a special case of the analysis of the general mean-
field Schloegl model of the second kind �17�, where it is
shown that

V 
 ��absorb + �active − 2�unstable� . �A4�

This expression also shows that V has a finite value, Vs, say,
at the spinodal p= ps�mf�= 1

4 and that V−Vs	�1−4p�1/2, as
p→ps�mf�. The nonlinear behavior as p approaches ps is
reminiscent of the behavior shown in our simulation results
for V�S , p� for the QCP in Fig. 10.

APPENDIX B: MODIFICATIONS AND
GENERALIZATIONS OF THE QCP

We consider the following modifications or generaliza-
tions of the standard QCP.

�i� Addition to the QCP of a separate random desorption
pathway associated with a “small” desorption rate d�0 �19�.
Making an analogy with the conventional equilibrium Ising
model, d corresponds to a temperaturelike variable, with d
=0 recovering the standard QCP. This generalized model re-
moves the special feature of standard QCP rules which pro-
hibits growth of isolated empty droplets and which prohibits
the shrinkage of vertical strip of the absorbing state. How-
ever, we find that generic two-phase coexistence persist in
this generalized model extending to a range of d�0. PC
terminates at an Ising-type critical point d=dc �19�. A de-
tailed analysis of this generalized model will be provided
elsewhere. This observation supports the claim made above
that the presence of an absorbing state in the QCP should not
be regarded as producing PC. It should also be noted that this
generalized model constitutes just one way of perturbing the
desorption rates in the QCP, and we find that various other
perturbations will also preserve generic two-phase coexist-
ence.

�ii� An adsorption-desorption version of the QCP on a
triangular lattice �with coordination number 6�: adsorption
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occurs randomly at rate p, and cooperative desorption of
particles occurs at rate k /4 where k=0, 1, 2, 3, 4, or 6 de-
notes the number of adjacent pairs of NN empty sites. Inter-
estingly, the mean-field kinetics remains unchanged from the
case of the square lattice in contrast to the conversion of the
type of transition. CC simulation studies reveal a continuous
transition to the absorbing state occurs at p�0.177. The
simulated steady-state coverage in the active state actually
follows the mean-field value from Appendix A more closely
and for higher p than for the QCP on the square lattice. This
feature is presumably a consequence of the higher coordina-
tion number for the triangular lattice. However, eventually
the steady-state coverage for the QCP on the triangular lat-
tice departs strongly from MF behavior in the vicinity of the
continuous transition.

�iii� Relaxation of the constraint on desorption in the QCP
so that now any particle with two or more empty neighbors
can desorb. Choosing the desorption rate to always equal
unity, this process corresponds to the threshold contact pro-
cess for M =2 �20�. A previous study proved the existence of
a phase transition, but did not determine its nature �20�. Our
own simulation study reveals the existence of a discontinu-
ous transition at peq

* �0.36 �starting from an empty lattice�

which should be compared with peq
* �0.0944 for the QCP.

Generic two-phase coexistence also occurs. The substantial
increase in adsorption rate peq

* from its value for the standard
QCP is readily understood since the effective desorption rate
is also significantly higher than in the standard QCP. An
additional perspective comes from applying a mean field
analysis wherein

d�/dt = p�1 − �� − ��1 − ��2�1 + 2� + 3�2� , �B1�

for the M =2 threshold contact process.
From Eq. �B1�, one finds a spinodal pressure ps�0.678

for this process versus ps�0.25 for the QCP, so the increase
in the mean field ps mimics the increase in peq

* . Some other
features of this threshold contact process should be noted.
Like the QCP, one still has the special feature that vertical
�or horizontal� strips of the absorbing phase cannot be eroded
and that empty patches embedded in the absorbing state can-
not grow outside of a rectangular region inscribing them. The
irreversible erosion of planar interfaces for p=0 is identical
to that in the QCP. Relaxation kinetics for p=0 or p=0+ is
described by the standard BP model.
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